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GAN application examples

● “First AI-generated painting auctioned at Christie’s”
https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-auction-christies-belamy-obvious-robbie-barrat-gans

● Automated coloring of black-white photographs
https://github.com/jantic/DeOldify

● https://thispersondoesnotexist.com/

● Cross-Domain transfer
https://hardikbansal.github.io/CycleGANBlog/

● Few-Shot transfer
https://medium.com/syncedreview/samsung-ai-makes-the-mona-lisa-speak-bea2b8362c38

● Deep Fakes
https://arxiv.org/abs/1909.11573

● ‘Vishing’
https://thenextweb.com/security/2019/09/02/fraudsters-deepfake-ceos-voice-to-trick-manager-into-transferring-243000/

● Biosignal denoising
https://github.com/softserveinc-rnd/ecg-denoise



  

Artificial Intelligence, Machine Learning & Deep Learning
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Classical Programming versus Machine Learning
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Artificial neurons: Building blocks for Neural Networks

y=ϕ((∑n xn⋅wn)+b)

w1

w2

w3

y

x1

x2

x3

bias

ϕ

Dendrite

Cell body

Node of 
Ranvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus

https://de.wikipedia.org/wiki/Datei:Neuron_Hand-tuned.svg



  

Neural Networks: Common types

● All neurons 
connected between 
layers

● Data flow left to right
● Fixed-sized input
● General purpose for 

classification / 
regression problems

● Convolution operation 
on local features

● Weights are shared 
across space

● Can process input of 
any size

● Object recognition

● Feedback loops -> 
Remembers past data 

● Weights are shared 
across time

● Can process input of 
any length

● Time series analysis; 
translation; speech 
recognition

Dense 
Feedforward

Convolutional 
networks

Recurrent 
networks



  

Training a neural network - Supervised learning

Loss
(1.84)

Optimizer
(minimizes Loss)

Adjust weights

Car 0.28
Horse 0.24
Cat 0.24
Bird 0.24

Car 1.0
Horse 0.0
Cat 0.0
Bird 0.0

Prediction

Ground truth



  

Predicting from a trained neural network (‚Inference‘)

Production network with trained weights

A well-trained network can generalize new input

Learned knowledge is contained in the weights

Car 0.01
Horse 0.03
Cat 0.92
Bird 0.04
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Learning methods in AI

Supervised learning

Minimize loss

Input
Prediction

Reinforcement learning

Maximize rewardReward

State
Action

Unsupervised learning

Find structures
Input Output

Target



  

A GAN learns to mimic a given data distribution 
(-> unsupervised learning)

CIFAR10 dataset, class 7 ‘Horse’ DCGAN, after 80k epochs / 8h

Source dataset samples Generated samples



  

1990 - 2013: Preliminary work
● ‘Artificial curiosity’, Schmidthuber, 1990
● Model vs. discriminator architecture, Li / Gauci / Gross, 2013

2014: ‘Generative Adversarial Nets’, Ian Goodfellow
● Breakthrough and name-defining paper

‘This, and the variations that are now being proposed is the most 
interesting idea in the last 10 years in ML, in my opinion.’ (Yann LeCun)

https://github.com/hindupuravinash/the-gan-zoohttps://twitter.com/goodfellow_ian/status/1084973596236144640



  

Objective: Outsmart
the detective 

(maximize D error)

Objective:
Distinguish fake from 
real (minimize D error)

GANs: A min-max game
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GANs: Training phase
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Generator Synthetic
data
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Create synthetic data with generator

Use latent space as parameter vector

GANs: Using the generator



  

Real Images
in Domain A

Fake Images
in Domain B

Real Images
in Domain B

Reconstructed 
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Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros

https://arxiv.org/abs/1703.10593
https://github.com/junyanz/CycleGAN



  

Few-Shot GAN

Few-Shot Adversarial Learning of Realistic Neural Talking Head Models
Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, Victor Lempitsky

https://arxiv.org/abs/1905.08233



  

Instability / Non-convergence
● Failure to approach Nash equilibrium
● Vanishing gradient: One network 

‘outsmarts’ the other, no training 
progress

Mode collapse (‘Helvetica scenario’)
● Generator falls back to mode subset
● Discriminator rejects those modes
● Complete learning breakdown

Global structure problems 
(‘Cerberus effect’)

● Caused by convnet spatial invariance
● Important to spot GAN-generated fakes
● New architectures try to solve this

GAN problems



  

GAN problems: Transfer fail

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros

https://arxiv.org/abs/1703.10593
https://github.com/junyanz/CycleGAN



  

Unnatural
textures

Hair is 
difficult to 
reproduce

Checkerboard
& pixel

artifacts

Global structure
problems

‘Cubist error’
Ear should not be visible,

Eyes misaligned

Hot to spot GAN-created ‘deep fakes’

General caution
Context? Political agenda? Rage-inducing?

Confirmed by other sources?



  

See also:

https://blog.inten.to/welcome-to-the-simulation-dd0d8cb6534d

https://developers.google.com/machine-learning/gan

Do-it-yourself in a webbrowser playground:

playground.tensorflow.org

poloclub.github.io/ganlab/

Jupyter notebooks used in the live demos:

https://github.com/SteffenBauer/KerasTools/blob/master/Notebooks/04%20MNIST
%20complete%20workflow.ipynb

https://github.com/SteffenBauer/KerasTools/blob/master/Notebooks/
13%201%20MNIST%20DCGAN.ipynb

More information:



  

Live Demo 1:

Deep Learning



  

Live Demo 2: GAN


