

Deep Reinforcement Learning

Talk & Live-Demo 27.10.2020 19:00 Linux User Group Frankfurt

Live Demo: Snake

Source Code:

https://github.com/SteffenBauer/Deep_RL

- · Part 1: Artificial Intelligence
- Part 2: Examples
- · Part 3: Reinforcement Learning
- Part 4: Limitations

Artificial Intelligence, Machine Learning & Deep Learning

Learning methods in AI

AI Talk 1: Supervised learning "Dogs versus Cats"

Inference

Class	Score
Dog Cat	0.01% 99.99%
Result:	Cat

AI Talk 2: Unsupervised learning "Generative Adversarial Network"

Neural networks

Training a neural network

"Deep" in deep learning: Abstraction hierarchy

Examples of Reinforcement Learning

Nature 2015/2016

At last — a computer program that can beat a champion Go player PAGE 484

nature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

ALL SYSTEMS GO

CONSERVATION SONGBIRDS À LA CARTE Illegal harvest of millions of Mediterranean birds PAGE 452 RESEARCH ETHICS SAFEGUARD TRANSPARENCY Don't let openness backfire on individuals PAGE 459

POPULAR SCIENCE D VCY ckfire Ckfire Dawkins's calling card forty years on PARE 482 PARE 482 O NATURE.COM/NATURE 28 January 2016 £10

Vol. 529, No. 758

DeepMind 2015: Self-taught human-level videogame playing

100 Training Episodes

400 Training Episodes

200 Training Episodes

600 Training Episodes

DeepMind 2016: AlphaGo versus Lee Sedol 4 - 1

The 'unexplainable' move

AlphaGo versus Lee Sedol 2016

Game 2, Turn 37

DeepMind 2017: AlphaGoZero – Learning by self-play only

https://deepmind.com/blog/article/alphago-zero-starting-scratch

DeepMind 2019: AlphaZero & Kramnik

Assessing Game Balance with AlphaZero: Exploring Alternative Rule Sets in Chess

https://arxiv.org/abs/2009.04374 (15 September 2020)

Car racing & *Pit Rho* strategy recommendation system

https://medium.com/analytics-vidhya/sports-analytics-ai-in-sports-5ea645d2e0af

Adaptive datacenter cooling

https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40

AI documentaries (free on YouTube)

AlphaGO The Movie

https://www.alphagomovie.com/

https://www.youtube.com/watch?v=WXuK6gekU1Y

The Age of A.I.

https://www.youtube.com/playlist?list=PLjq6DwY ksrzz_fsWIpPcf6V7p2RNAneKc

Reinforcement Learning

The standard model of Reinforcement Learning

Live Demo Catch game in 5 minutes

Q-Learning & Value networks

Q-Function:

 $Q(S) \rightarrow \overrightarrow{V}_a$

Training a value network (Q-Learning)

Epsilon-Greedy / Future discount / Experience Replay

"Exploitation" vs "Exploration"

Epsilon:

Value -> Action

Experience replay

Random batch training

Prevent 'catastrophic fogetting'

Other RI architectures

Actor-Critic example: AlphaGo

Actor-Critic:

Position evaluation

Monte Carlo Tree Search:

Look-ahead search

Limitations of current AI

Current AI is limited:

- Data-Hungry Sample-inefficient, needs massive amounts of data
- **Opaque** An AI's decisions are very *difficult to explain*
- Narrow "One-trick Pony", able to learn only one very narrow task
- Brittle Breaking adversarial examples are easy to find

Sample inefficiency

Building Machines That Learn and Think Like People (2016) https://arxiv.org/abs/1604.00289

DQN vs Human performance

(Source: "Human-level control through deep reinforcement learning (2015)")

"Montezuma's Revenge" - RL Holy Grail

"Naughty" Als

RI systems optimize their reward function – at any cost.

Suboptimal chosen rewards can lead to unexpected results.

Fruit game:

Hungry mouse must find block of cheese, and avoid poison and death by starving.

Problem: Agent becomes suicidal when negative reward is set too high -> *"Maximizes" reward by killing itself as fast as possible.*

More examples at:

https://hackaday.com/2018/11/11/the-naughty-ais-that-gamed-the-system/